SURF and MU-SURF descriptor comparison with application in tattoo matching

نویسندگان

  • Mikel Iturbe
  • Olga Kähm
  • Roberto Uribeetxeberria
چکیده

In this work a comparison of the SURF and MUSURF feature descriptor vectors is made. First, the descriptors’ performance is evaluated using a standard data set of general transformed images. This evaluation consists in counting correspondences and correct matches between ten image pairs. Image pairs have different transformations (rotation, scale change, viewpoint change, blur, JPEG compression and illumination change) in order to evaluate the descriptors in different environments. The second test evaluates the descriptors’ suitability for tattoo matching. In this case, one hundred randomly chosen transformed tattoo images are matched against a database of ten thousand images. The transformations include rotation change, RGB noise and cropped images. Non-transformed images are also evaluated. In both tests, the descriptors represent the interest points previously detected and stored into a file by the same detector, to ensure the validity of the test. Results show that the newer and modified version of the SURF descriptor, MU-SURF, performs better than its counterpart and it is suitable for tattoo matching.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Matching Algorithm based on SURF Feature-point and DAISY Descriptor

Image matching technology is the research foundation of many computer vision problems, and the matching algorithm based on partial features of images is a research focus in this field. In order to overcome the unstable performance of classic SURF algorithm on rotation invariance, an image matching algorithm combined with SURF feature-point and DAISY descriptor is proposed. Based on the feature ...

متن کامل

Face recognition using SURF features

The Scale Invariant Feature Transform (SIFT) proposed by David G. Lowe has been used in face recognition and proved to perform well. Recently, a new detector and descriptor, named Speed-Up Robust Features (SURF) suggested by Herbert Bay, attracts people’s attentions. SURF is a scale and in-plane rotation invariant detector and descriptor with comparable or even better performance with SIFT. Bec...

متن کامل

Performance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching

Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...

متن کامل

P-SURF: A Robust Local Image Descriptor

SIFT-like representations are considered as being most resistant to common deformations, although their computational burden is heavy for low-computation applications such as mobile image retrieval. H. Bay et. al. proposed an efficient implementation of SIFT called SURF. Although this descriptor has been able to represent the nature of some underlying image patterns, it is not enough to represe...

متن کامل

Transform Coding of Image Feature Descriptors

We investigate transform coding to efficiently store and transmit SIFT and SURF image descriptors. We show that image and feature matching algorithms are robust to significantly compressed features. We achieve nearperfect image matching and retrieval for both SIFT and SURF using ∼2 bits/dimension. When applied to SIFT and SURF, this provides a 16× compression relative to conventional floating p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012